The Puppy Spider Is Not As Big As You Think

by

While we’re on spider debunkings, Piotr Naskrecki’s “puppy spider” story is making the media rounds this week, spawning the usual juvenile Nopes and Kill It With Fires! With every re-telling the spider gets bigger, of course.

Not to rain on the Goliath spider parade, but what Piotr originally reported was:

they weigh up to 170 g – about as much as a young puppy.”

170 grams is big. By arthropod standards, it’s huge. But the spider is not, say, the Shelob people are imagining. For perspective, I’ve marked 170 grams on a standard puppy growth chart.
 
spider

 

Puppy spider is not a 3 week old Labrador. It’s the weight, at birth, of a Chihuahua. Big, sure, but you’re not going to saddle this thing up and ride it to work.

The spider looks huge in the photographs for another reason, too. Piotr used wide-angle lenses that exaggerate the size of foreground relative to background objects. This wide-angle macro effect is a technique that Piotr does especially well. And it makes big spiders look larger than life.

Anyway, if you’d like one of Piotr’s puppy spiders for your living room wall, he’s just put a print on sale for prices so low he can’t be making any money:

Photo copyright Piotr Naskrecki, all rights reserved.

 

Three Reasons Why Spiders Can’t Burrow Through Human Skin

by

Australia's redback spider (Latrodectus)

 

Yesterday, you may have seen this amusing-yet-dismal failure of the news media. Hundreds of outlets breathlessly reported a tourist’s tale of a skin spider plowing a pustulated trail through his belly. Snopes dissects why the story is bogus; essentially, the sole source is the tourist himself. The poor kid was likely told he had scabies mites, or similar common affliction, and not knowing what a mite was he settled on the nearest arachnid he recognized. That, plus ingrained cultural arachnophobia and a media disinclined to turn down click revenue over such a silly matter as ethics, and the story goes viral.

Shoddy journalism aside, there is no plausible reason for any spider to burrow into skin, and no physical attributes that would allow them success at it, either. Spiders can’t do it for the same reasons giraffes can’t hover: the laws of physics just don’t work that way, not for the way spiders are built. Here are a few reasons why the story simply could not have happened as reported.

1. Spiders are active animals that need to breathe. That’s hard to do when trapped under skin, and spiders lack the breathing tubes of real skin-burrowers like botfly.

2. Spiders are too delicate. Animals that burrow are strong, compact, and stubby. Think of the bullet-like build and short, powerful legs of a mole or a wombat. Serious burrowers like earthworms lack legs altogether. What’s a spider? Pretty much the opposite. Inconvenient legs everywhere, and far too spindly and weak to burrow. (A few spiders do make soil burrows, but soil is a rather different and more forgiving medium).

3. Spiders lack an implement for opening a suitable entry hole. Spiders have fangs, which are thin and sharp and can appear scary, but if you’ve ever tried to dig a hole using only hypodermic needles you’ll appreciate the uphill battle a spider faces.

Also, there has never been a single confirmed observation of a skin-burrowing spider.

So, no. You don’t have to worry about skin spiders.
 

Alex Wild Photography In Diapause

by

texana12
 
As you may have heard, Myrmecos Industries is moving its global headquarters from Illinois to the University of Texas/Austin. Starting in January, Mrs. Myrmecos will be a postdoctoral researcher on bee microbiomes, I will be UT’s new curator of entomology, and mini-Myrmecos will be dictating our domestic affairs and arranging the cats. We are all very excited!

With the move comes tough decisions. I have spent the past months pondering the fate of my photo business, as starting this month I will no longer be able to devote more than a few hours a week to it. By “business”, I mean the commercial side of the operation. I’m not putting down my camera, of course. That would kill me.

I have, for the present, settled on the following strategy. Effective immediately, here is what to expect in the transition.

Things that remain the same:

1. The Alex Wild Photography site will continue to receive updates and new images, as well as offering the usual prints, periodic print sales, and image licenses.
2. The BugShot workshops. Why mess with a good thing?

Things that change:

1. Private photo lessons and commissioned projects are discontinued. I may still consider the occasional request, but the timing and price will work around my new schedule.
2. My images will no longer be available via a 3rd party stock agency (Visuals Unlimited/Corbis.) Abandoning a workload-handling agency may appear counter-intuitive, but the stock industry is experiencing such turmoil that I no longer feel comfortable abrogating licensing rights when I won’t have time to monitor them as the ship sinks. Correspondingly:
3. The sole source of image licenses and permissions will be via the automated shopping cart on my website. I cannot guarantee I will have time to answer other licensing requests promptly.
4. Requests for free images may not be answered. If your intended unpaid use is explicitly covered by my image use policy, then you may proceed without prior permission. Otherwise, permission may be obtained via paid licensing on my website.

Once I am up and running in the UT collections I will reassess the state of things and adjust accordingly.

 

More On Pest Control Advertising: Orkin Takes The High Road

by

Meanwhile, Orkin- that other pest control giant- adopts a softer, more subtle marketing strategy.

orkin

Screen capture from Orkin’s website, displayed without permission as Fair Use commentary on Orkin’s marketing strategy.

Many people are reluctant to call pest control, perhaps because decades of environmentalism has softened our cultural attitude towards nature, or perhaps just out of guilt towards the wee household insects. In contrast to Terminix’s brute force fear campaign, Orkin projects a feel-good “Bugs are cool, but sometimes we do have to kill them”. I suspect this appeals to a great number of homeowners on the fence about whether they should use a commercial exterminator.

Of course, a company’s marketing front has little to do with the quality of the job they actually perform, so don’t take this as a recommendation.

(Disclosure: Orkin has purchased image licenses from me in the past, but has also used several of my photographs without permission. My relationship with the company is complicated…).

How To Lie With Pest Control Marketing

by

Few major pest control companies are as awful in their marketing as Terminix. Consider:

fearmongering

[2011 advertisement for Terminix]

The message is clear: Ants give you diseases, and our company can get rid of them for you.

True?

No.

Let’s be clear about the scare term “carrier”. Terminix would like us to think ants are carriers in the epidemiological sense- like an infected Ebola patient boarding a plane. But that’s a semantic sleight of hand.

The research on the topic of ant-borne diseases is rather more mild. Ants are only “carriers” in that they can physically transport bacteria found in the environment. That’s not surprising. Most things transport bacteria. Your shoes, for example, are excellent carriers of strep, sensu Terminix. Your own hands are even more effective.

Merely carrying bacteria, which everything does anyway, is a different matter than being effective at causing disease. And the evidence that ants are actually dangerous as infectious agents, rather than just theoretically so, is so weak that there are precisely zero known cases where an ant has ever infected a person with strep, staph, or salmonella.

Antweb’s AntBlog explains:

 …if an ant walks through an area densely populated with infectious bacteria, they track it along in quantities large enough to show up in a petri dish.

The good news: Petri dishes don’t have immune systems. The quantities of bacteria ants transport and slough off as they saunter across your counter tops will probably be small compared to the infectious dose for healthy humans. The quantities of bacteria that remain on the ants’ feet after taking the thousands of little ant-steps between a source of infection and your table would presumably knock off the vast majority of the bacteria, leaving too few to constitute an infectious dose.

So what I’m trying to say is: thought it is theoretically possible for ants to transmit infectious bacteria to humans, as far as I’m aware (other members of this blog, please speak up if you know better!) there are no records of ants being definitively implicated in someone catching a disease. As best as I can tell, all of the articles that reference ants’ potential to be vectors for infectious bacteria are based upon laboratory studies in which nothing besides some agar in a petri dish got sick.

Absent evidence of any real health threat, Terminix is just trying to scare you out of your money.

 

The Ever-Present Azteca

by

Azteca sp.

Anyone keeping an eye out for queen ants in the New World tropics will notice at least one pattern: the constant presence of winged Azteca. All year round, in all forested habitats, there are always hopeful young Azteca queens.

Azteca colonies are typically massive, holding large and tightly-contested treetop territories. Colonies produce a steady stream of flighted reproductives throughout the season, essentially saturating the environment with propagules should a rare patch of unclaimed canopy territory open. This queen came to a light trap in Armenia, Belize.

An Evolutionary Transition, In Vivo

by

Among the most dazzling products of insect evolution are leafcutter ants, which cultivate an edible fungus on a compost of fresh vegetation. The ants’ digestive chemistry is so simplified that they can only eat the fungus that grows in the underground gardens.

The leafcutter/fungus system is complex enough to seem highly improbable, and indeed, it appears to have evolved only once in the 130 million year history of ants. How could such a complex system appear?

The system did not spring forth fully-formed, of course. I was reminded of the gradual evolutionary transition on our recent BugShot course in Belize, when I happened across Trachymyrmex intermedius.

Trachymyrmex intermedius

 

Contrary to appearances, T. intermedius is not a leafcutter ant.

At least, not technically. True leafcutters belong only to the genera Atta and AcromyrmexTrachymyrmex is instead the sprawling, paraphyletic genus from which the leafcutters arose. These ants also farm fungus, but they typically use dead vegetation, caterpillar frass, and other bits of detritus. Like so:

argentina1

Green vegetation is not the usual fare for Trachymyrmex, but T. intermedius and several others do take it on occasion. Seeing a few of these small ants trundling off with a harvest more fit for their larger cousins was just a reminder that animal behavior is naturally variable, and that variation is what allows the evolutionary process to explore new paths.

Little ant, big thoughts.

Did LiveLeak Just Leak An Unknown Ant Behavior?

by

Those corners of the internet prone to viral outbreaks are abuzz today with an intriguing ant video:

Is it real? Yes.

The quality isn’t great, but the clip appears to show an Asian Leptogenys daisy-chaining their bodies in parallel lines to haul away a large millipede. I have spent the morning searching the technical literature for mention of this unusual behavior, and am coming up empty. Some Leptogenys species, including L. diminuta, L. nitida, and L. processionalis, are known to forage in groups and transport prey “cooperatively” (source, source). What is meant by “cooperative” is often vague. (For more, see this excellent recent review of cooperative transport by Helen McCreery).  Yet I didn’t find any explicit description of workers linking up, mandible to abdomen, to pull together.

Is ponerine daisy-chaining an unknown behavior? Possibly. It is also possible my search skills aren’t up to the task. If you know of a description of it, please drop a note in the comments. I am not the only one interested, either:

couzin

I did, however, happen across a higher quality video from a Cambodian beekeeper:

I presume the swelling music helps motivate the ants to pull harder. But, I digress.

Steve Shattuck took a photograph recently in Borneo capturing a variation on this behavior, with workers forming a chain by biting the legs of a preceding ant.

Leptogenys1

Again, I don’t think the behavior has been formally described beyond this smattering of visual media.

Regardless of documentation, daisy chaining raises some definitely unanswered questions and will make a fine Ph.D. thesis for some lucky student. How do ants organize themselves in chains? What cues do they use? How do they know to let go? Is chaining employed only for particular sizes or species of prey? How does the behavior effect overall foraging efficiency? What are the evolutionary precursors to chaining? And, do these ants have any other tricks up their coxae?

 ***Update 8/30/2014 - 

In the comments, Roberto Keller suggested that the eminent ponerophile Christian Peeters might know something. And indeed, Christian emails in with the following:

I observed this fascinating behaviour in Cambodia 4 years ago. Stéphane De Greef was with me and some of his photos are attached.

The behaviour was very stereotyped: mandibles grab preceding ant’s gaster (between first and second segment).

Seiki Yamane identified it as Leptogenys sp. 47, closely related to L. chalybaea described from Borneo by Emery (but stronger sculpture especially on gastral tergites).

The millipedes were 130mm long, identified as order Spirostreptida (Diplopoda). Ant is 16mm long.

Back then I reviewed the literature and found no other record of chain behaviour in Ponerinae. No record of millipede predation in Leptogenys.  Specialized hunting on millipedes is restricted to Thaumatomyrmex, Probolomyrmex and Gnamptogenys, but these are solitary hunters on a very different kind of millipedes (polyxenids).

I started writing a ms on this behaviour (formation of chains in ants through a self-assembling behaviour) but sadly I have not been able to get further observations. It seems to happen at certain times of the year only.

By an amazing coincidence, two days ago I finished fieldwork in northern Thailand and came across the same Leptogenys species. There were cleaned out ring segments of big millipedes outside entrances. Unfortunately I did not observe any raids.

Image by Stéphane De Greef, used with permission.

Image by Stéphane De Greef, used with permission.


postscript: The virality of the video also illustrates both the good and the bad about the internet. The good, of course, is that this fascinating ant behavior found its way in front of scientists who otherwise might not have seen it. On the other hand, the viral nature of the video means that actual person who filmed it is drowned out among the hundreds of uncredited, unsourced copies. Securing the information about where and when the video was taken, and verifying the species, is going to be difficult. This is one reason why crediting sources online is important. Lose the credit, lose the data.