Everything Old Is New Again – Ponerine Taxonomy Returns To Its Roots


Pachycondyla striata, from Brazil, is one of the few names to remain stable after Schmidt & Shattuck fragmented Pachycondyla.

A monumental day for ant taxonomy! The mythical Schmidt & Shattuck ponerine revision, long rumored to be in the works, has emerged from the mists of legend and lore. It’s real! All 242 pages are in Zootaxa:


I don’t wish to speak for the entire myrmecological community, but I think it is safe to say that Chris Schmidt and Steve Shattuck’s ponerine revision has been the most awaited taxonomic paper of the past decade. Ponerine ants comprise one of the greatest subfamilies in terms of abundance and species diversity, particularly in the tropics. Ant people know ponerines. The group is the most purely predatory of the large subfamilies and contains some spectacular insects: trap-jaw ants, matabele ants, various and sundry predators and huntress ants.

Schmidt & Shattuck’s paper is significant for two reasons. First, nearly all ant researchers will be affected by the taxonomic changes. And second, the changes themselves are large, especially for the hundreds of species that used to belong to the sprawling polyphyletic genus Pachycondyla. Under the Schmidt & Shattuck hammer, Pachycondyla in the strict sense remains just a shadow. All but a handful of Neotropical species move to 19 different genera, some new, most revived from older literature. There are about a third more ponerine genera to learn than there were yesterday. That’s a lot to digest.

You might think such large changes would invite controversy, but I anticipate that the new scheme will be widely accepted and largely stable.

1. The work itself is thorough, involving morphology and several different genetic markers. There is good reason this paper was years in the making.
2. Many of the newly valid names are resurrected from the older literature, and as such they already reflect gross morphological groupings as seen by earlier generations of myrmecologists.
3. Ant taxonomists are more uniformly phylogenetic in their outlook than the preceding cohort. The polyphyly of Pachycondyla was not an accident born of ineptitude; rather, it was designed that way by Bill Brown, who was operating under a different philosophy of systematics more popular in the middle of the last century. Since Brown’s school has faded from prominence, most biologists are uncomfortable with polyphyly. As Schmidt & Shattuck are dragging ponerine taxonomy back into the comfort zone of most evolutionary biologists, I expect the new scheme will be popular.

In the big picture, Schmidt & Shattuck have put this important group of ants on a stronger taxonomic foundation. In the small picture, we are faced with the mundane realities of re-memorization.

Pachyondyla apicalis? No longer. Get used to Neoponera apicalisPachycondyla stigma? Nope. It’s Pseudoponera stigma. Plus, there’s Brachyponera, PseudoneoponeraMesoponera…

source: Schmidt, CA, Shattuck, SO (2014) The Higher Classification of the Ant Subfamily Ponerinae (Hymenoptera: Formicidae), with a Review of Ponerine Ecology and Behavior. Zootaxa 3817 (1): 001–242.


Guest Post: Crowdfunded study of maternal care in leaf beetles


The following is a guest post by entomologist Guillaume Dury.

In the tropical forests of South America, survival can be tough for a small larva. Ravenous predators are on the prowl and deadly parasites soar nearby. Even faced with these threats, most species simply abandon their offspring, usually eggs. My favourite solution to survival of offspring is maternal care, but this raises the question: “Why do some insects care for their young while most do not?”

Comparatively few people study maternal care in insects and I’d like your help to be one of them. Insects are my passion, below is a photo of me at 4 years old, in the Swiss Alps with my insect net. Since then, I’ve obtained a B.Sc. in biology and ecology and I’ve finished my M.Sc. working on leaf beetles. I’m a BugShot 2012 alumnus and love insect photography, you can find my portfolio and my complete research C.V. on my website: http://www.gjdury.com/


Guillaume, 4 years old, with his insect gear in the Swiss Alps.

My project is partially funded by a National Geographic Young Explorer’s grant. I’m collaborating with Dr. Windsor of the Smithsonian Tropical Research Institute and Dr. Bede of McGill University, we propose a series of observations and experiments to determine how Proseicela vittata Fabricius (Chrysomelidae: Chrysomelinae) mothers defend their offspring, and from what threats, and how it differs from a closely related species without maternal care.


Proseicela vittata guarding a brood of larvae. Photo by Dr. Donald Windsor.

Leaf beetles feed on leaves exposed to predators and parasites, parents of some species guard their progeny. The picture above is a mother Proseicela vittata with her larvae. In P. vittata, the mother beetle protects her eggs by gestating them, then, after giving birth to small larvae, she remains with them for all of their development.

The mother beetle doesn’t feed her larvae, but prepares their first meal. She will cut the veins of the first leaf the larvae eat. The leaves are those of the toxic Solanum morii (Solanaceae), and no one is certain about why the mothers cut the veins, we think it makes the leaves less toxic for the newborn larvae.

If you can share my project and spare a few dollars, it will make a big difference for me and I’ll do my very best to give back the best science I can! I am collecting funds through an Indiegogo campaign:


The Many Talents of Trap-Jaw Ants…


…include swimming gracefully across water. Astounding:

This, from a new study by Steve Yanoviak in the Journal of Experimental Biology:

Abstract: Upon falling onto the water surface, most terrestrial arthropods helplessly struggle and are quickly eaten by aquatic predators. Exceptions to this outcome mostly occur among riparian taxa that escape by walking or swimming at the water surface. Here we document sustained, directional, neustonic locomotion (i.e. surface swimming) in tropical arboreal ants. We dropped 35 species of ants into natural and artificial aquatic settings in Peru and Panama to assess their swimming ability. Ten species showed directed surface swimming at speeds >3 body lengths s−1, with some swimming at absolute speeds >10 cm s−1. Ten other species exhibited partial swimming ability characterized by relatively slow but directed movement. The remaining species showed no locomotory control at the surface. The phylogenetic distribution of swimming among ant genera indicates parallel evolution and a trend toward negative association with directed aerial descent behavior. Experiments with workers of Odontomachus bauri showed that they escape from the water by directing their swimming toward dark emergent objects (i.e. skototaxis). Analyses of high-speed video images indicate that Pachycondylaspp. and O. bauri use a modified alternating tripod gait when swimming; they generate thrust at the water surface via synchronized treading and rowing motions of the contralateral fore and mid legs, respectively, while the hind legs provide roll stability. These results expand the list of facultatively neustonic terrestrial taxa to include various species of tropical arboreal ants.

source: Yanoviak, SP, Frederick, DN. 2014. Water surface locomotion in tropical canopy ants. J Exp Biol 217, 2163-2170. doi: 10.1242/​jeb.101600

BugShot 2014: The Aftermathening



The group in front of Reynold’s Mansion, antennae extended. (photo by Ian Wright)

I have returned from coastal Georgia and from another spectacular BugShot workshop! Once again, the annual event surpassed my expectations. It wasn’t just the gorgeous natural environment, either, or the discovery of the extremely enigmatic Zoraptera. It was an extraordinary group of enthusiastic participants who made this workshop worth doing.

Rather than recap the festivities myself I will leave you in the capable hands of participants. I’ll update the list as more material works its way to the internet.



If you feel you missed out by not attending, don’t worry! We have our next event coming up in September in Belize.


At BugShot 2014


Where has Myrmecos gone?

We’re at BugShot 2014, an insect photography course I am co-teaching with Piotr Naskrecki and John Abbott on coastal Georgia’s beautiful Sapelo Island. I am especially excited for this one. The weather will be beautiful, the waning moon will be perfect for blacklighting, the horseshoe crabs will be out, our venue is a mansion on the coast, and we have attracted once again a diverse array of talented biologists and photographers.

If you’re missing out, don’t despair. Our next workshop is coming up in Belize this September.

Bringing Ants to a Wider Audience


Or, not:

Open Access

I don’t generally pick on scientists for not making their articles freely available. Publication is expensive, after all. But surely some types of articles merit more of an Open Access effort?

(More seriously, the article is about AntWiki, an open ant biology site that will be increasingly valuable as myrmecologists add content.)